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A REVIEW OF THE STATUS OF

FIRE PREFORMANCE PREDICTIVE METHODS

by

Stanley P. Rodak; Physicist, Heat

The problems of fire-resistance have attracted the attention of

various workers. This project is concerned with the theoretical aspects
of fire resistance. From a knowledge of the thermal propertities of a

building material shaped into a particular geometry, we wish to be able
to predict the thermal fire rating**of scaled constructions of the same
material. Ideally, we would like the calculations techniques to include
variable thermal properties and endothermic and exothermic processes.

In order to circumvent certain numerical difficulties in using vari-
able thermal properties, it was felt that sufficient information would
be had if the calculations are made in a manner that will allow the infor-
mation to be displayed in the following fashion. Giedt (1) has suggested
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a mean value for thermal conductivity when it varies with temperature.

Endothermic and Exothermic processes are to be disregarded until
the numerical techniques are sufficiently developed.

The mathematical equations to be used are as follows:

parabolic equation of heat flow* -Q||) T = 0 (1)

boundary condition ,
St

^Sn
= -hT (2)

(n is the normal surface component)

* Nomenclature is at end of text.
** The thermal fire rating will be taken as the time before the tem-

perature in a region in the specimen under consideration reaches

a value predetermined to be unsafe for fire-resistance purposes.
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The mathematical model which we will work with is a homogeneous
solid bounded by two parallel planes. The problem will be two-dimensional.

Over one surface, the exposed surface, we define a temperature rise
by

T(o,y,t) = f^ (t) (3)

where f^ (t) is the ASTM time-temperature curveo

On the other surface, the unexposed surface, the heat flux is that
for a horizontal surface (2,3)

h = h + h (4)
n c

h = (.174e/(T -T )) • ((T /lOO)^ - (T /lOO)^) (5)
XI so s o

1/3
h = .275 T

'

(6)
c s

For a high, vertical surface, h c would still be proportional to T

but the coefficient changed (3,4). The mechanism of transpiration
cooling was not considered (5).

The numerical technique we choose should be accurate enough to calcu-
late temperatures for our test example (6, pg 126).

TEST CASE:

The region o<x<i has zero initial temperature. The
end x=o is kept at temperature To for t>o. At x-X there
is radiation into a medium at zero temperature; then,

temperature for o<x<i. are given by

T(x,£) = T
l+i'h(i-x/i')

I + ih Li
2(Pn + (^h)^ sin (3n

\n (Xh+(lh)"+rn)
-Pn

( 7 )

where Pr are the positive roots

The exponential term causes the

Three finite-difference methods
ferential equations have been studied

of Pn = 0 ,

series to converge rapidly,

of approximating the partial dif-
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The first studied was the forward-difference explicit algorithm (8);

pcAx*" (T. .

^,3
- .) = kAt (T^ + - 4T^ .)

i^j 1-1J 1+1; J i;J-l ^^J+^
(8)

Here, AY .. AX

For a slab NAX thick and MAY tall,

Tj = f (kAc) J = 1, 2, ..., m (9)
j

t lx
is the temperature on the exposed surface at the k interval of time*.

The requirement that At /Ax“ be chosen such that

kAt ^ I

pcAx^ 4 (10)

in order to have stability, that is, the finite-difference algorithm is

immune to the accumulation of round-off errors (7), caused a survey of

other methods (metal rods were to be imbedded in the test example interior).

The backward difference implicit algorithm (8) is defined by

pcAx^ (T^'^J
J J

.) = kAt (T
k+1

i-1 ,3
+ T

k+1
i+1, j

+ T
k+1
i,j-l i,j+l

k+1
- 4t7!) (11)

This method is stable for all values of At/Ax'". Iterative and matrix
reduction techniques are available to solve the resulting unknown equa-
tions (9,10,11,12). For a solid of N interior points in each direction,

equations result for the two-dimensional problem.

The backv/ard-dif ference implicit algorithm was applied to a parti-
cular problem: finite thick slab exposed on one surface to temperature

*
Ic Ic

To meet the boundary condition (2), we replace (T
. ^ .

- T, , ) by

Xj -

k i
T^ j) by 1/2 in equation 8. The unexposed surface is at i = + 1;

i 1 is the exposed surface, we make a similar replacements in (11)
and (12) to meet boundary conditions of (2).
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unexposed surface has constant "cooling” coefficient ho, metal
rods were placed 1" from exposed face. The equations were solved for
each successive time increment (At = 1 min.. Ax = Ay = .2") by Gauss
Siedel Iteration*. Figs. 1 & 2 are graphs of the computer solved
problem

.

Fig, 2 contains two different profiles of the distance from exposed
slab surface versus temperature. One profile is taken along a line (AA

'

)

normal to the slab surface and passing through one of the steel rods.
The other is along a line (BB*), parallel to AA', but about 3" from the
steel rod (the steel rods imbedded in the concrete slab were on 6" centers)
Temperatures at 30 min., 50 min., and 210 min., intervals along the line
AA ' from 0 to .8" have negative curvature (13). This is not the correct
slope ( 14)

.

The Crank-Nicolson algorithm (15) is reported to be unconditionally
stable (16). It is obviously based on sounder physical arguments than
the two previous methods. The algorithm is

. 2 /„k+l
pcAx (T , ,

J

t; ) = (kAt/2)
J

(

k+1 k+1 k+1 k+1
^'i-1, j

^ \+l, j
^ j-1 ^ j+1

^

T^ + T*f . + T^
, T

+ T^f - 4T^"^^ - 4 t'!^ .)
1-1, j 1+1, j 1, j-1 i,j+l i,j i.j ( 12 )

The same test case (metal rods imbedded in a slab as used for the backward
difference implicit algorithm was used to test this algorithm. Graphs of

the computer solved problem are displayed in Fig. 3 & 4 . The distance-
temperature curves in Fig. 4 have the proper curvature.

As a precursory check of the Crank-Nicolson algorithm, it was used
to calculate surface temperatures of the test example (homogeneous solid
bounded by parallel planes). The resulting surface temperature calcula-
tions, as well as those predicted b}’' theory, are displayed in Fig. 5.

The surface temperatures differ by 307o at 100 minutes.

In order to make the Crank-Nicolson difference approximation more
closely approximate the differencials, equations were derived that allow
the Ax spacing to vary in an unequal manner through the slab; the spacing
Ay is equal. This would allow a fine grid near the unexposed surface,
where the temperatures vary more slowly with time. Note 2 discusses how
a grid spacing was chosen for .17, "accuracy."

Another problem was encountered, for the above example used as a

check in the variable Ax computer program, interior temperatures were
higher than surface temperatures , k

i nr. i i • i o
(T = 100 F, k = I,

. .
. ; J = I, 2, .

J

* The equation showed diagnol-dominance, hence the choice of Gauss-
Siedel Iteration techniques. See Note 1 for termination procedures.
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1 2
The aleorithm values had definitely conv®rged(T, .

< T„ .

~ 139.9 F
1,J 2, j

after 60 iterations). The conditions under which this algorithm will
converge to values greater than the exposure surface temperatures (and

hence apparently violate the first law of thermodynamics) are discussed

2 2
in Note 3. This discussion is for T

^ i
where the

2
tion quess” of T. . = 0 i = 2, Xoj j = 1, 2 ...^

j

2 2
found that similar unstable conditions (i.e. T. .

< T_ )
J • J

2 2
if the initial iteration quess was T. ,

= T. .or even if

"initial itera-

Yq. We also

occurred even

T^ .

j were

assigned their exact values as predicted from theory (the convergence

of T
2

2.j
was still 140 °F).

The present status of the project is to circumvent this problem. It

may be that the constraints involved in keeping the Crank -Nicolson algorithm
from violating the first law^ a At several orders of magnitude smaller will
have to be used.
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NOMENCLATURE*

surface film coefficient

convection heat-transfer film coefficient

radiation heat transfer film coefficient

conductivity

thickness

temperature

unexposed surface temperature

exposed surface temperature

finite-difference notation for temperature at time

increment, x coordinate of iAx = Ax and y coordinate

jAy .. jAx.

t ime

space coordinates

dif fersivity

surface emissivity

density

finite division of x or y coordinate

finite division of time

*
Units are English
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Note 1

A DISCUSSION OF WHEN TO TERMINATE CALCULATIONS

k+1
OF T . BY GAUSS-SIEDEL ITERATION*

J

Consider the equations

(4 + ^7^) . + T^^J . +
1
+ T^"*"!

. + .kAt 1,.] 1-1,1 i+l,J i,J+l J-1 i,j
( 1 )

+ Ax ^ + 2) T^"-^ = ^ (T^-"! . + .

kAt k i,j 1-1, J 2 i,J-l i,J+l i,J
( 2 )

where a°i,j = T^^
.
+ t; . + t. + T‘f . ,

- 4T,
' 1-1, J 1+1, J

^ + T^ - 4T^
iJ+1 iJ-1 i,j

a" i, j = TV . . + ^ (T^^ . , + T;' ) + (
' 1-1, J 2 i,j-l 1, J+1

pc .
,
h

-Ax f -2)T? .

kAt k 1, j

Equation 1 is the Crank-Nicolson (CN) algorithm for finding interior

temperatures of a solid bounded by two infinite parallel planes. Equa-

tion 2 is the CN algorithm for the unexposed surface temperatures. (The

solid is NAx thick and MAy tall (Ax = Ay)). Since the equations are
diagonally dominate, Gauss-Siedel Iteration techniques are used to solve
the N'M unknown „k+l .. m.i , too • ,

•

T^
^

(i = 2,3, ..., N+1; j = 1,2, 3 M; i = 1 is

the unexposed surface).

k k+1
All T. , and T. . are known.

i,J

k+1
As an initial start to the iteration, all T. ,

are set equal to
' 1. J

2 2
zero. Equation 1 is used to calculate T„ ^ . This new value of T„

z, 1 2,1
2

is used now in the calculation of T„ The iteration process of

k+1
replacing the old values of T^ . by the newly calculated values of

k+1
T. . continues methodically by working through the j = 1,2, ... M for

J

* The method of determining the termination of the calculations
is mainly from (21) . See also (9)

.



Note 1

- 2 -

k+1
each i index until a new set of T

, , have been iterated.
J

Let

n k+l lc+1
AT

, , = (T (nth iteration) - T. . (n- 1 iteration)

(In the following discussion^ it is convenient to consider only values
of n > 3 . )

For our diagonally dominate matrix. AT? . should become small

after a finite number of iterations. That is^ we assume

lim at: .
= 0

J
n-e eo

i = 2,3, . . .,N

j = 1,2,...,M

In practice, this process must be terminated after a finite
number of iterations (Iq)* This is called truncating. Let S. .

J

be the '"exact" temperature value at [(i+l)Ax, JAy]. The radius of

k+1
convergence is given by (T . . in this formula assumes the value of the

io iteratioii)

:

r.k+1
T. .

- S. .

J iJ
< 1>

1-L
AT^ .

^,2

where* L = sup

n=3
sup
i =

j = 1, 2. . o,M
i = 2,3. . .,N

j
at’^'^^:

1

—
I

AT^
' J

That is, for the (i+1) iteration, we find the maximum value \t of the

-T+1 i

ratio
AT
u.

AtJ .
1

J

A._ = sup

i = 2,3,

j - 1.2, M

A
T+1

AT. .

ATT .

J

reference 13, pg 9



Note 1

- 3 -

From the set of (3 < T < <»), we again find the maximum value L,

OO

L = sup \
T..3

In practice^ an approximate value of L is obtained from the set

of \ of the first ten iterations.,
T





Note 2

GRID SIZE DETERMINATION

The following houristic method of arriving at an equation to

determine the proper grid size to use in one-dimensional finite dif-

ference equations was described by Dr. Arms (21). We can extend the
results to two-dimensional problems. Let f. ((i+1) Ax) be the itera-
tived temperature value for grid size Ax. Call f((i+l) Ax) the "exact"
value. Then^ in an approximate manner^

£Ax ((i+l)^x) = f((i+l) Ax) + Ax^.A

A can be thought of as an operator. (The series expansion was terminated
on the first term). Taking a grid size of Ax/2

'Ax/

2

= f +
Ax^

or
f . - f Ax/2
Ax

A + 2nd order terms.

By doing the same problem for two different grid sizes^ A can be
determined (we neglect the 2^^^ order terms), and hence the proper
variable grid spacing for the desired degree of accuracy.
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Note 3

A DISCUSSION OF THE CONSTRAINTS

IMPOSED ON CRANK-NICOLSON FINITE -DIFFERENCE

ALGORITHM BY GAUSS -SIEDEL ITERATION

Consider a solid (i thick) bounded by two parallel planes. On

one surface^ there is a sudden temperature rise Ts for t>0. The ini-
tial temperature of the solid is zero. Using Crank-Nicolson difference
equations^ we wish to find the interior temperatures at time At. Gauss-
Siedel Iteration will be used to solve for T^ • . As a first quess set

all T? . equal to zero. The equations for a irariable Ax and Ay are:
J

i=l

exposed
surface

for t>o)

inside solid:

(9sAll. + ^ + AiL + 1)
^kAt Ax^ (Axj^+Ax^) Ax2(Ax^+Ax 2> i, j

^
Ax^(Ax^ + AX2)

k+1 Av^ k+1 1

i-l,j Ax2(Axj^ + Ax^) i+1, j 2 J-1
+

T
k+1
i, j+1

) ( 1 )

_
Ay^ k Ay^ k+1 1 .k+1

^i,j“ Axj^CAy^ + Ax2> Ax2(Ax^ + Ax2> i+1, j 2 ^ i, j-1

)
4f£gAyl ^ k

i^ j+2^ \kAt Axj^(Ax^ + Ax^) Ax2(Ax^ + Ax^) / ^i



Note 3

- 2 -

at surface 'k = i

i+l,j

Axj k
^

kA: ^ ^i,J

/AZ N2 ™k+l
'^Ax/

, 1 /„k+l
,
„k+l .

,

i-lj 2 ^i,j+P * \ j

^kAt
- (Ax,

Ay h
Ax k

' 1) T

let Ax-i = Ax, Ay i = 2^ • *

1 1
m.

Equation (1) then becomes (noting for our case = 0);

i, j

^
"i+1

^ ^
^^i,j-l i,j+r

Where 0 = (

2pcAy'‘

k At

-1
+ 2(gr +2) ^ < 1

Let us introduce some symmetry into the boundry condition:

_k k
^i, 1 - ^i,3

Then the first iteration is:
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T? . = gu)T (1 + P) =
Zm

y
^ 8 ^y

J-

T2
4

= ^“^8 ^

2 Q ^ /I I Q . q 2
. ,

Qin-2. Q „
T» = P(A)T (1 + P + P + .00 + P ) = PodT (t

—

Q )

2, m s s i-p

2 2 2
t:^ „ = pVt
3, 2 8

„ = pVt (1 + 2 P)
3, 3 s

„ = pVt (1 + 2p + 3P^)
J j s

T? = P^OD^ n + 2P + 3P^ +
3,m s

+ (m-1)
l-p”~^-(m-l)p"^

- (1 - P)^

etc

,

second iteration:

- = P [u)T + P^U)\ + 2Puyr (1 + p)1
2, 2 s s s

= PtuT (+ 2P + 2P^ + P^oo^) < 1
s

For the various heat-conclusion problems under study^ this type
of analysis was used to understand the constraints imposed on the iteration
techniques. It was found that when the constraints were violated, there
was convergence of the (all equations had diagonal dominance), but

J

k+1 k
the

j
were larger than for several Ax^ from the exposed surface ^).
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